池义春研究员
男,1982年6月,籍贯:福建省福安市
163银河电子游戏网站研究员,三级教授,龙马特聘教授,博士生导师
电子邮箱:yichun@cufe.edu.cn
一、主要学习经历
2000年9月至2004年7月,中国人民大学数学与应用数学专业,理学学士
2004年9月至2009年7月,北京大学应用数学专业,理学博士
2007年9月至2008年12月,加拿大多伦多大学,联合培养博士
二、研究方向
精算学、保险经济学、巨灾风险管理
三、主讲课程
《应用随机过程》(本科生)、《金融数学II》(博士生)、《精算学前沿问题研究》(博士生)
四、主要研究成果
1.课题
[1]国家自然科学基金面上项目(No.12371479),2024年1月至2027年12月,在研;
[2]教育部人文社科重点研究基地重大项目(No.22JJD790090), 2023年1月至2025年12月,在研;
[3]国家自然科学基金面上项目(No.11971505),2020年1月至2023年12月,结项;
[4]教育部人文社科重点研究基地重大项目(No.16JJD790061), 2016年11月至2020年8月,结项;
[5]国家自然科学基金面上项目(No. 11471345),2015年1月至2018年12月,结项;
[6]国家自然科学基金青年项目(No. 11001283),2011年1月至2013年12月,结项.
2.论文
[1]Y. Chi, X.Y. Zhou, S.C. Zhuang (2024). Variance insurance contracts.Insurance: Mathematics and Economics 115, 62-82.
[2]Y. Chi, Y. Huang, K.S. Tan (2024). An insurer’s optimal strategy towards a new independent business.Scandinavian Actuarial Journal 1, 89-107.
[3]Y. Chi, T. Hu, Y. Huang (2023). Optimal risk management with reinsurance and its counterparty risk hedging.Insurance: Mathematics and Economics 113, 274-292.
[4]Y. Chi, Z.Q. Xu, S.C. Zhuang (2022). Distributionally robust goal-reaching optimization in the presence of background risk.North American Actuarial Journal 26(3), 351-382.
[5]Y. Chi, J. Zheng, S.C. Zhuang (2022). S-shaped narrow framing, skewness and the demand for insurance.Insurance: Mathematics and Economics 105, 279-292.
[6]Y. Chi, S.C. Zhuang (2022). Regret-based optimal insurance design.Insurance: Mathematics and Economics 102, 22-41.
[7]Y. Chi, F.D. Liu (2021). Enhancing an insurer's expected value by reinsurance and external financing.Insurance: Mathematics and Economics 101(B), 466-484.
[8] A.V. Asimit, T.J. Boonen,Y. Chi, W.F. Chong (2021). Risk sharing with multiple indemnity environments.European Journal of Operational Research 295,587-603.
[9]Y. Chi, K.S. Tan (2021). Optimal incentive-compatible insurance with background risk.ASTIN Bulletin 51(2), 661-688.
[10]Y. Chi,W. Wei (2020). Optimal insurance with background risk: An analysis of general dependence structures.Finance and Stochastics24(4), 903-937.
[11]J. Cai,Y. Chi(2020). Optimal reinsurance designs based on risk measures: A review.Statistical Theory and Related Fields4(1), 1-13.
[12]Y. Chi, S.C. Zhuang (2020). Optimal insurance with belief heterogeneity and incentive compatibility.Insurance: Mathematics and Economics92, 104-114.
[13]Y. Chi, K.S.Tan, S.C. Zhuang (2020). A Bowley solution with limited ceded risk for a monopolistic reinsurer.Insurance: Mathematics and Economics91, 188-201.
[14]Y. Chi(2019). On the optimality of astraight deductible under belief heterogeneity.ASTIN Bulletin49(1),243-262.
[15]Y. Chi(2018). Insurance choice under thirddegree stochastic dominance.Insurance: Mathematics and Economics83,198-205.
[16]Y. Chi, W. Wei (2018). Optimum insurance contracts with background risk and higher-order risk attitudes.ASTIN Bulletin48(3), 1025-1047.
[17]Y. Chi, F.D. Liu (2017). Optimal insurance design in the presence of exclusion clauses.Insurance: Mathematics and Economics 76,185-195.
[18]Y. Chi, X.S. Lin, K.S. Tan (2017). Optimal reinsurance under the risk-adjusted value of an insurer's liability and an economic reinsurance premium principle.North American Actuarial Journal 21(3), 417-432.
[19]Y. Chi, M. Zhou (2017). Optimal reinsurance design: A mean-variance approach.North American Actuarial Journal 21(1), 1-14.
[20] X. Chen,Y. Chi, K.S. Tan (2016). The design of an optimal retrospective rating plan.ASTIN Bulletin 46(1), 141-163.
[21] A.V. Asimit,Y. Chi, J. Hu (2015). Optimal non-life reinsurance under Solvency II Regime.Insurance: Mathematics and Economics 65,227-237.
[22] Y. Zhu,Y. Chi, C. Weng (2014). Multivariate reinsurance designs for minimizing an insurer's capital requirement.Insurance: Mathematics and Economics 59, 144-155.
[23]Y. Chi, H. Meng (2014). Optimal reinsurance arrangements in the presence of two reinsurers.Scandinavian Actuarial Journal 5, 424-438.
[24]Y. Chi, X.S. Lin (2014). Optimal reinsurance with limited ceded risk: A stochastic dominance approach.ASTIN Bulletin 44(1), 103-126.
[25]Y. Chi, C. Weng (2013). Optimal reinsurance subject to Vajda condition.Insurance: Mathematics and Economics 53(1), 179-189.
[26]Y. Chi, K.S. Tan (2013). Optimal reinsurance with general premium principles.Insurance: Mathematics and Economics 52(2), 180-189.
[27]Y. Chi(2012). Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability.ASTIN Bulletin 42(2), 529-557.
[28]Y. Chi, X.S. Lin (2012). Are flexible premium variable annuities underpriced?ASTIN Bulletin 42(2), 559-574.
[29]Y. Chi(2012). Optimal reinsurance under variance related premium principles.Insurance: Mathematics and Economics 51(2), 310-321.
[30]Y. Chi, K.S. Tan (2011). Optimal reinsurance under VaR and CVaR risk measures: A simplified approach.ASTIN Bulletin 41(2), 487-509. (It wins 2012 Hachemeister Award.)
[31]Y. Chi, X.S. Lin (2011). On the threshold dividend strategy for a generalized jump-diffusion risk model.Insurance: Mathematics and Economics 48(3), 326-337.
[32]Y. Chi(2010). Analysis of expected discounted penalty function for a general jump diffusion risk model and applications in finance.Insurance: Mathematics and Economics 46(2), 385-396.
[33]Y. Chi, S. Jaimungal, X.S. Lin (2010). An insurance risk model with stochastic volatility.Insurance: Mathematics and Economics 46(1), 52-66.
[34]Y. Chi, J. Yang, Y. Qi (2009). Decomposition of a Schur-constant model and its applications.Insurance: Mathematics and Economics 44(3), 398-408.
3. 奖项
Charles A. Hachemeister Prize Casualty Actuarial Society 2012
中国保险教育论坛优秀论文奖 中国保险学会 2015
涌金教师学术奖 163银河电子游戏网站 2014/2017/2020
鸿基世业优秀论文奖 163银河电子游戏网站 2021/2023
中国保险与风险管理国际年会优秀论文 清华大学 2023
五、主要学术兼职
《统计与精算》和《Risk Sciences》编委
中国现场统计研究会风险管理与精算分会常务理事
中国保险学会智库专家库专家
六、指导学生论文情况
指导毕业博士2名,毕业硕士生11名.